
SINGLE DOF SYSTEM 

 This section will introduce the basics of Dynamic Analysis by 
considering a Single Degree of Freedom (SDOF) problem  

 Initially a free vibration model is used to describe the natural 
frequency 

 Damping is then introduced and the concept of critical damping 
and the undamped solution is shown 

 Finally a Forcing function is applied and the response of the SDOF 
is explored in terms of time dependency and frequency 
dependency and compared to the terms found in the equations of 
motion 

  



SINGLE DOF SYSTEM 
(CONT.) 
 Consider the System Shown 

 
m = mass (inertia) 

b  = damping (energy dissipation) 

k  = stiffness (restoring force) 

p  = applied force 

u  = displacement of mass 

 = velocity of mass 

 = acceleration of mass 

 

u,  ,    and p are time varying in general. 

m, b, and k are constants. 
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SINGLE DOF SYSTEM 
(CONT.) 
 Some Theory: 
 The equation of motion is: 

 

 

 In undamped, free vibration analysis, the SDOF equation of motion reduces to: 

 

 

 Has a solution of the form: 

 

 

 

 This form defines the response as being HARMONIC, with a resonant frequency of: 
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UNDAMPED FREE 
VIBRATION SDOF 
SYSTEM  For an SDOF system the resonant, or natural frequency, is given 
by: 

  

  

 Solve for the constants: 
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UNDAMPED FREE 
VIBRATION SDOF 
SYSTEM (CONT.)  The response of the Spring will be harmonic, but the actual form of the 

response through time will be affected by the initial conditions: 

  

 If                                             there is no response  

  

 If                                             response is a sine function magnitude 

  

  

 If                                              response is a cosine function (180                       
    phase change), magnitude 

 If     response is phase and magnitude  
    dependent on the initial values 
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SINGLE DOF SYSTEM – UNDAMPED 
FREE VIBRATIONS 

 The graph is from a transient analysis of a spring mass system with Initial 

velocity conditions only  

Time 
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k = 100 

m = 1 

 

 

  

 

T = 1/f = 0.63 secs 
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DAMPED FREE 
VIBRATION SDOF  If viscous damping is assumed, the equation of motion becomes: 

  

  

 There are 3 types of solution to this, defined as: 
 Critically Damped 

 Overdamped 

 Underdamped 

 

 A swing door with a dashpot closing mechanism is a good analogy 
 If the door oscillates through the closed position it is underdamped 

 If it creeps slowly to the closed position it is overdamped. 

 If it closes in the minimum possible time, with no overswing, it is critically damped. 

0)()()(  tkutubtum 



DAMPED FREE 
VIBRATION SDOF (CONT.) 

 For the critically damped case, there is no oscillation, just a decay 
from the initial conditions: 

  

  

 The damping in this case is defined as: 
 

 

 A system is overdamped when b > bcr 

  

 Generally only the final case is of interest - underdamped 
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DAMPED FREE 
VIBRATION SDOF (CONT.) 

 For the underdamped case b < bcr  and the solution is the form: 

  

  

  
         represents the Damped natural frequency of the system 

 

 

 

         is called the (Critical) damping ratio and is defined by: 

 

 

 

 In most analyses            is less than .1 (10%) so 
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 The graph is from a transient analysis of the previous spring mass system with 

damping applied  

Frequency and 

period as before 

 

Amplitude is a 

function of damping 

2% Damping 

5% Damping 

DAMPED FREE VIBRATION SDOF (Cont.) 

Time 

Disp. 



DAMPING WITH FORCED VIBRATION 

 Apply a harmonic forcing function: 

 note that        is the DRIVING or INPUT frequency 

 

 The equation of motion becomes 

 

 

 The solution consists of two terms: 

 The initial response, due to initial conditions which decays rapidly in the presence of 

damping 

 The steady-state response as shown: 

 

 

 

 

 

 This equation is described on the next page 
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DAMPING WITH FORCED VIBRATION 
(Cont.) 

 This equation deserves inspection as it shows several important 

dynamic characteristics: 

 

At  = n this term = (2    )^2 and controls 

the scaling of the response 

 

From this is derived the Dynamic 

Magnification Factor 1/2 
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This is the static loading 

and dominates as  tends  

to 0.0 

At  = n this term = 0.0 

With no damping present this 

results in an infinite response 

Phase lead of the response relative to the input 

(see next page) 

At  >> n both terms drive the 

response to 0.0 

 







  is defined as a phase lead in Nastran : 
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DAMPING WITH FORCED VIBRATION 
(Cont.) 



 Summary: 

 For  

 

 Magnification factor            1 (static solution) 

 Phase angle                       360º (response is in phase with the force) 

 

 For  

 

 Magnification factor            0 (no response) 

 Phase angle                       180º (response has opposite sign of force) 

 

 For  

 

 Magnification factor            1/2 

 Phase angle                       270º 
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DAMPING WITH FORCED VIBRATION 
(Cont.) 



When the Damped system is loaded with 

an exponential function of a single 

frequency, the resultant oscillations are 

called harmonic: 

 

 

HARMONIC OSCILLATIONS 
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HARMONIC OSCILLATIONS 
(CONT.) 



 A Frequency Response Analysis can be used to explore the 

response of our spring mass system to the forcing function. 

 This method allows us to compare the response of the 

spring with the input force applied to the spring over a wide 

range of input frequencies 

 It is more convenient in this case than running multiple 

Transient Analyses, each with different input frequencies 

 Apply the input load as 1 unit of force over a frequency 

range from .1 Hz to 5 Hz 

 Damping is 1% of Critical 

DAMPING WITH FORCED VIBRATION 
(Cont.) 



Magnification Factor = 1/2 = 1/G = 50 

Static Response = p/k = .01 

Peak Response = .5 at 1.59 Hz 

 

Note: 

Use of a Log scale helps identify low 

order response 

Displacement 

Frequency (Hz) 

DAMPING WITH FORCED VIBRATION 
(Cont.) 



 There are many important factors in setting up a Frequency Response Analysis 

that will be covered in a later section 

 

 For now, note the response is as predicted by the equation of motion 

 At 0 Hz result is p/k 

 At 1.59 Hz result is p/k factored by Dynamic Magnification 

 At 5 Hz result is low and becoming insignificant 

 

 The Phase change is shown here: 

 In phase up to 1.59 Hz 

 Out of phase180 Degrees after 1 .59 Hz 

 

DAMPING WITH FORCED VIBRATION 
(Cont.) 



 Try a Transient analysis with a unit force applied to the spring at 1.59 Hz 

 Again damping of 1% Critical is applied 

 The result is shown on the next page:  

 The response takes around 32 seconds to reach a steady-state solution 

 After this time the displacement response magnitude stays constant at .45 

units 

 The theoretical value of .5 is not reached due to numerical inaccuracy (see 

later) and the difficulty of hitting the sharp peak 

DAMPING WITH FORCED VIBRATION 
(Cont.) 



 Transient analysis with a unit force applied to the spring at 1.59 Hz 

Displacement 

Time 

DAMPING WITH FORCED VIBRATION 
(Cont.) 


